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Abstract
We investigate the propulsive force resulting from the rotation of a flexible filament in the low
Reynolds number regime. Using a simple linear model, we establish the nonlinear torque–force
relations for two torque-driven actuation modes. When the rotation of the filament is induced by
two perpendicular transverse oscillating torques, the propulsive force increases monotonically
with the torque amplitude. Conversely, when a constant axial torque is applied, the torque–force
characteristics displays an unstable branch, related to a discontinuous transition in the shape of
the filament. We characterize this shape transition using two geometrical parameters,
quantifying the wrapping around and the collapse on the axis of the filament. The proposed
theoretical description correctly accounts for our experimental observations and reveals a strong
dependence of the filament dynamics on the anchoring conditions.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The oscillation of flexible flagella and the rotation of ‘rigid’
chiral arms are the two standard propulsion strategies used
by microorganisms [1]. The hydrodynamics of these two
modes of locomotion have been extensively studied in the
past, both theoretically and experimentally (see, e.g., [2, 3]
and references therein). Recently, Dreyfus et al succeeded
in fabricating the first human-made microswimmer, relying
on the magnetic actuation of an artificial flagellum made of
self-assembled paramagnetic colloids [4]. Conversely, the
design of chiral propelling microstructures remains a technical
challenge. A possible solution to this problem could be the
use of soft rotating filaments which spontaneously adopt chiral
shapes.

In this paper we focus on this intermediate propulsion
mechanism, which has attracted much interest in the last
two years and motivated a set of theoretical, numerical and
experimental works [5–8]. Here we combine a theoretical
and experimental study to extend the elastohydrodynamics
description we proposed in [8]. Firstly, on the basis of a
simple linear model, we establish the nonlinear constitutive
relations between the propulsive force and the actuation
torques. We show important qualitative differences between
two beating modes in torque-driven systems. The propulsive

force increases monotonically with the torque amplitude in
the case of two transverse torques applied perpendicularly
on the filament (figure 1(A)). In contrast, elastic filaments
actuated by a constant longitudinal torque (figure 1(B)) exhibit
an unstable branch in the force–torque relation, which can
lead to a strong discontinuity in the propulsion force when the
rotation period becomes of the order of the largest relaxation
time of the bending modes. Secondly, we present an extended
analysis of our experiment performed with a macroscopic
flexible filament immersed in a viscous fluid. Force and
torque measurements are in excellent agreement with our
simple model. Furthermore, our observations allow us to relate
the strong nonlinearities in the force response to a wrapping
transition in the shape of the filament.

2. Force–torque constitutive relations for a rotating
flexible filament

2.1. Beating of flexible rods: a minimal model

The beating of flexible rods in viscous flows has proven to
be accurately described by simple models ignoring geometric
nonlinearities and nonlocal hydrodynamic effects [9, 10]. We
here restrict our analysis to this framework. More precisely,
we consider a flexible rod initially straight and oriented
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Figure 1. (A) Sketch of a flexible filament actuated by two AC
transverse perpendicular torques oriented along the x and y axes.
(B) Sketch of the same filament actuated by a DC axial torque
oriented along the z axis.

with an angle ψ with respect to the rotation axis z. The
rotation of the filament is imposed at one of its extremities
(z = 0), while the other end remains free (z = L)
(figure 2). The external torques applied at the anchoring
point impose the rotation of the tangent vector: t(0, t) =
[ψ cos(ωt), ψ sin(ωt), 1]. As a result of the competition

between viscous and elastic forces, the filament adopts a
curved shape, r = [x(z), y(z), z], parametrized by the z
coordinate. Within the small deformations approximation the
bending energy of the rod is a quadratic function of its local
curvature |∂2

z r|: Eel = 1
2

∫
dz κ(∂2

z r)2, the resulting local
elastic force being fel = −κ∂4

z r. The coupling with the
surrounding viscous fluid is modeled by a local anisotropic
friction coefficient (resistive force theory). The local viscous
drag is defined by

fv = (η‖ − η⊥)(t · v)t + η⊥v, (1)

where v is the material velocity and η‖ and η⊥ are the
longitudinal and transverse drag coefficients, respectively.
These coefficients are approximated by their values for a
straight slender rod with a circular cross section: η⊥ =
4πη/[log(L/a) + 1

2 ] and η‖ = 2πη/[log(L/a) − 1
2 ], where

a is the radius of the rod and η is the viscosity of the
fluid [11]. In the small deformations approximation, the force
balance equation fe + fv = 0 reduces to the so-called Machin
equation [12]:

η⊥∂t r = −κ∂4
z r. (2)

After a spatial Fourier transform, this equation is readily
solved. The rod undergoes a rigid body rotation at
angular frequency ω as a result of the superposition of
four propagating bending waves damped over a distance

Figure 2. Shape of an elastic filament driven at z = 0 for lω/L = 0.18 and ψ = 15◦, computed from equation (2). (a) Thirty snapshots of the
filament profile over one rotation period. Below are their projections in the (x, y) plane. The time interval between each snapshot is constant.
(b)–(d) Projection of the same two profiles in the (x, z), (y, z) and (x, y) planes, respectively, taken at two different times. Note that the
filament undergoes a rigid body rotation although the projected shapes in the (x, z) and (y, z) planes are time dependent.
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Figure 3. (a) Propulsive force normalized by the elastic force as a function of Sp. The force is computed as described in the text. Solid line:
theoretical prediction from the linear model. Dashed lines: asymptotic scaling behaviors, Sp2 and Sp1/2 in the low and high Sp limits
respectively. (b) Normalized propulsive force Fz/Fe versus normalized transverse torque Txy/Te (case A) and versus normalized axial torque
Tz/Te (case B), where the torques are computed from equation (5). Solid lines: theoretical predictions from the linear model. Dashed line for
case A: quadratic power law. Dashed lines for case B: asymptotic scaling behaviors, T 2

z in both the low and high Tz limits.

lω ≡ (κ/η⊥ω)1/4. Defining the four complex wavenumbers,
qn(ω) = l−1

ω exp[i(n π2 − π
8 )], the rod profile is given by

x(z, t) = (ψL) Re

(
4∑

n=1

αn e[iωt−qn (ω)z]
)

, (3)

y(z, t) = (ψL) Im

(
4∑

n=1

αn e[iωt−qn(ω)z]
)

. (4)

The αn coefficients are set by the boundary conditions r(0) = 0
(fixed end), ∂z(t) = t(0, t) (angular actuation), ∂3

z r(L) = 0
(force free end) and ∂2

z r(L) = 0 (torque free end). A typical
representation of these stationary chiral shapes is displayed in
figure 2.

2.2. Propulsive force

We now focus on the propulsive properties of the filament.
As the viscous flow bends the filament into a chiral shape, a
nonzero thrust is generated along the z axis. The anchoring
point experiences an axial force Fz = ez · ∫

fv(z) dz, with
fv as defined in equation (1). In all that follows, the forces
are normalized by the elastic force necessary to bend the
filament with a curvature of order 1/L: Fe ≡ κ/L2. We
define a normalized rotation speed using the viscous relaxation
time of the bending mode of wavelength L, τ = η⊥L4/κ .
The resulting dimensionless number, Sp ≡ ωη⊥L4/κ , is
commonly referred to as the Sperm number in the context of
low Reynolds number locomotion; it may also be convenient
to express Sp in terms of penetration length: Sp = (L/ lω)4.
The variations of the normalized axial force with the Sperm
number are shown in figure 3(a). The axial force increases
monotonically with the Sperm number; this increase is rather
fast in the low Sp regime whereas it weakens for large Sp.
To account for these variations, we stress that both the three-
dimensional shape of the rotating filament and the axial force
Fz are identical to those obtained by the superposition of two

filaments beating periodically in perpendicular planes. Indeed,
using equation (2) and the boundary conditions at the filament
ends, one can easily provide a local expression for Fz = κ(1 −
η⊥/η‖)

∑
u=x,y [∂zu(0)∂3

z u(0) − 1
2∂

2
z u2(z)], which is a well-

known result in the context of planar oscillations [9]. It yields
a thrust increasing quadratically with the beating pulsation ω
in the low frequency limit. It is worth mentioning that this
scaling law can also be predicted from a symmetry argument.
At low Reynolds number, a rotating chiral object experiences
a viscous force Fz = Mω, where M is a coefficient of the so-
called mobility matrix [13]. M is zero for a nonchiral object;
since at ω = 0 the filament is straight, M(ω = 0) must
vanish. Moreover, changing the sign of the rotation changes
the chirality of the filament, which implies that M is an odd
function of ω. Hence, in the low-speed limit, we expect M to
increase linearly with the angular velocity leading to an overall
force proportional to ω2. It follows that Fz ∼ FeSp2 from
dimensional analysis. Note that this implies that the sign of
the force is independent of the direction of rotation, as noticed
in [5].

In the high Sp limit, the filament is strongly deformed.
The chiral deformations are localized in a region of extent
lω � L in the vicinity of the anchoring point. For z > lω
the bending waves in both the (x, z) and (y, z) planes are
damped and the filament has collapsed on the rotation axis.
The force produced by the wrapped filament is comparable
to the one induced by the rotation of a rigid helix of length,
pitch and radius lω, which increases as ωl2

ω. It then follows
from dimensional analysis that Fz ∼ FeSp1/2 in this high Sp
limit. Note that this last scaling argument holds beyond the
small deformations approximation.

2.3. Torque controlled actuation: discontinuous dynamic
transition

We have here characterized the propulsive force corresponding
to a given beating pulsation, independently of the actuation
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mechanism at the rod end. We now investigate two specific
forcings where imposed external torques drive the filament.
We show that major differences arise in the force–torque
constitutive relation as well as in the filament kinematics.

The two actuations modes we consider (referred to here
as A and B) are sketched in figure 1. In case A the rotation
of the tangent vector at the anchoring point around the z
axis results from the simultaneous periodic oscillations of two
transverse torques (Tx and Ty) aligned along the x and y axis
(see figure 1(A)). For sake of simplicity we only consider the
case where the two torques have the same amplitude and a
π/2 phase shift: Tx = Txy cos(ωt) and Ty = Txy sin(ωt).
Tx and Ty alone would induce the propagation of planar
deformations along the filament. In case B the rotation is
induced by a constant torque Tz in the z direction applied to
a crankshaft which sets the angle between the tangent vector
and the rotation axis (see figure 1(B)).

Whatever the actuation mode, the external torque applied
on the filament balances the local viscous torque integrated
along the filament:

T = −
∫

r × fv dz, (5)

where the viscous force is defined in equation (1). We now
establish the constitutive relations between the propulsive force
Fz and the external torque amplitudes parametrized by the
angular velocity ω. More precisely, we computed the torques
Txy(ω) or Tz(ω) required to rotate the filament at a given ω,
knowing the filament shape from equations (3) and (4) and
using equations (1) and (5).

Before giving a more detailed description, we can
anticipate the asymptotic behaviors common to the two
actuation modes. In the low Sp (low speed) limit the filament
is barely deformed. The torque T is then simply the one
needed to rotate a tilted rigid rod in a viscous fluid and both
Txy and Tz scale as η⊥ωL3 ∼ Sp. In the other limit, large
Sp, only a portion of length lω deviates from the z axis, on
a distance of order lω as well, and contributes to the viscous
torque. As a consequence the rigid body rotation of such
filaments collapsed on the z axis induces torques of typical
amplitude η⊥ωl3

ω ∼ Sp1/4 in the three directions. Combining
these predictions with the asymptotic scalings for Fz , we infer
that the axial force increases quadratically with the imposed
torque amplitude whatever the actuation mode (A or B) both
in the small and large torques limits: Fz ∼ T 2

xy for case
A, and Fz ∼ T 2

z for case B. However, plotting the full
constitutive relations, we uncover a major difference between
the apparently similar actuation mechanisms (figure 3(b)).
Again, torques are systematically normalized by the elastic
torque Te = κ/L. In case A, as expected, the axial force is a
monotonically increasing function of Txy as in the case of a 2D
beating. More surprisingly the constitutive relation is very well
approximated by a single quadratic function for all Sp. In case
B, in contrast, this second actuation mode reveals a counter
intuitive response to the axial torque. Indeed for intermediate
torques (corresponding to intermediate Sperm numbers) Fz

decreases with Tz . This decreasing branch is unstable and
would lead in practice to hysteretic jumps in the axial force

upon torque cycling. This result is in good agreement with
the Brownian dynamics simulations of Manghi et al [5]. We
wish to emphasize that this phenomenon is intrinsically related
to the nonlinear interplay between the linear elasticity and
the linear viscous flow. In the case of rotating rigid chiral
structures the linearity of the Stokes equation implies that the
axial force should increase linearly with the applied torque
whatever the detailed shape of the objects.

From a design perspective, two specificities of such a
flexible propeller are worth mentioning at this point. Firstly,
the overall quadratic increase of the force with the actuation
torque means that the range of available forces is wider
when the chirality of the rotating body is induced by the
fluid–structure interaction. Secondly, it follows from the
constitutive relations that these two actuation modes obviously
offer very different propulsion strategies. The case A mode,
which requires two independent rotational actuators, provides
very robust forces with respect to the torque fluctuations.
Conversely, to vary its propulsive force over a wide dynamical
range a swimmer using a case B actuation only needs slight
modulations of its control torque.

3. Experiments: shape and force transitions

To better understand the counter intuitive response of
the elastic filament to an external axial torque (case B),
we performed a rotation speed controlled experiment on
macroscopic flexible filaments. Firstly, our measurements
allowed us to assess the validity of the predictions in
the presence of long-range hydrodynamic coupling and
geometrical nonlinearities. Secondly, the quantitative
characterization of the filament profiles shed some light on the
discontinuity in the force–torque relation.

3.1. Experimental setup

As already described in [8], we used an elastomeric filament
attached to an electric motor, immersed in pure glycerin. The
filament was made by filling a glass capillary tube with a
1:1 mixture of polyvinylsiloxane polymer and curing agent.
Iron carbonyl particles were added to the polymer solution
in order to match the density of the glycerin. The curing
is thermally activated and occurs within minutes at room
temperature. The glass capillary was then broken in order
to retrieve an elastomeric rod of radius a = 435 μm. The
Young’s modulus of the charged filament was measured by
dynamical mechanical analysis: E = 0.7 MPa. The filament
was then immersed in the glycerin tank (measuring 20 × 20 ×
20 cm3). The shear viscosity η = 1 Pa s was measured with
a controlled stress rheometer in a cone-plane geometry prior
to each experiment, and exhibited no change due to pressure
or hygroscopic variations. The motor, placed on top of the
tank, could deliver discrete rotation speeds ranging from 0.01
to 10 rpm, through a gearbox, yielding Sperm numbers varying
over five decades (from 10−1 to 104). The elastic filament
was attached to the motor axis, so as to be fully immersed
in the glycerin, with an angle ψ = 15◦ between the filament
at rest and the vertical rotation axis. Importantly, in order to
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Figure 4. Evolution of the filament shape as a function of Sp. Each
picture is a superposition of snapshots taken over one rotation period,
with a constant time interval. As Sp increases, the filament wraps
itself around and collapses on the rotation axis.

keep the anchoring condition unchanged for all experiments,
the length of the filament, L, was varied from 10 to 2 cm by
successively cutting the filament attached to the motor axis.
The high viscosity of the fluid allowed us to remain in low
Reynolds number conditions (Re < 10−2) throughout the
range of lengths and speeds available.

The filament first goes through a transient regime, which
lasts up to about 1 h for the longest filament. It then reaches,
as expected, a stationary shape which undergoes rigid body
rotation. We here focus our attention only on the steady-state
regime. Typical pictures are displayed in figure 4. To obtain
the experimental shapes, a mirror was positioned with a 45◦
angle from the side of the tank, allowing us to take pictures
of the filament projected simultaneously in two perpendicular
planes with a single 6 megapixel digital camera (Nikon D70).
We used a correlation algorithm to extract the coordinates from
these pictures, thus determining the experimental profile with
submillimeter precision.

3.2. Force and shape transitions

For all accessible Sperm numbers, we have computed the
axial forces and torques Fz and Tz from quantitative image
analysis, using equations (1) and (5) and v(z) = ωr(z)eθ
for the local filament velocity. In figure 5 we compare our
measurements to the theoretical prediction for the variations
of Fz with Tz . This prediction is in qualitative agreement
with the experimental data. However, we further conformed
our model to the experimental data by taking into account
the slight eccentricity of the anchoring point with respect to
the rotation axis, r(0) ≡ δo = 2 mm (see the pictures in
figure 4). The agreement between the new prediction and the
experimental data is then quantitative up to Sp ∼ 300 and still
very good for larger values of Sp (thick line in figure 5). This
excellent agreement demonstrates that both the long-range
hydrodynamic interactions and the geometrical nonlinearities
only weakly affect the propulsive force–torque characteristics.
Note that for nonzero eccentricities the asymptotic behaviors
for the axial force and torque are changed in the large Sp
limit, as another length scale, δo, is introduced. When lω
becomes lower than δo, the transverse characteristic length
of the helix becomes of order δo. As a consequence, the

Figure 5. Normalized propulsive force Fz/Fe versus normalized
axial torque Tz/Te (case B). Thick solid line: theoretical prediction
from the linear model with boundary condition δo = 2 mm. Thin
solid lines: theoretical predictions from the linear model with
boundary conditions δo = 0, δo = 10 mm and δo = 40 mm, from left
to right. Circles: experimental data. Note that, for small
eccentricities, Fz can experience an amplification by a factor of two
when Tz jumps from the low-speed to the high-speed stable branch.
More surprisingly, the propulsive force is lowered by almost a decade
when the torque jumps from the high-speed to the low-speed stable
branch.

force and torque scale as Fz ∼ ηωlωδo ∼ Sp3/4 and
Tz ∼ ηωlωδ2

o ∼ Sp3/4. Remarkably, we also found that
high eccentricities kill the unstable branch in the force–torque
relation [14] (see the force–torque characteristics plotted for
different values of δo in figure 5). This strong dependence on
the boundary conditions was quite unexpected, and prevents
us from providing a simple qualitative explanation for the
existence of a first order transition in the force response.

We now come to a more detailed description of the shape
transition underlying this force–torque constitutive relation.
As depicted in figure 4, for Sp < 10 the filament remains
almost straight. For intermediate Sperm numbers, Sp ∼ 10,
the filament is increasingly bent by the viscous flow, and it
continuously wraps itself around the axis of rotation as Sp
increases. Finally, above Sp ∼ 500, the rod has completely
collapsed on the axis but for a small fraction of the filament,
below the anchoring point, which keeps its helical shape.
To better characterize the collapse and the wrapping of the
filament on the z axis, we display in figure 6 the evolution of
the distance to the axis of the rod free end normalized by the
rod length, δ = r(L)/L, and of the wrapping angle, δθ =
θ(L) − θ(0) (see figure 2 for the definition of θ ). δ decreases
monotonically as Sp increases. At low Sperm numbers, the
bending of the filament mostly occurs in the flow direction
and δ weakly deviates from sinψ . Indeed only chiral rods
can experience forces pointing towards the rotation axis when
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Figure 6. (a) Distance to the axis at the rod end, δ = r(L)/L , as a function of Sp. (b) Wrapping angle δθ as a function of Sp. (c) δ as a
function of the normalized actuation torque Tz/Te. (d) δθ as a function of Tz/Te. Solid lines: theoretical predictions from the linear model
with boundary condition δo = 2 mm. Circles: experimental data. Dashed lines in (b): asymptotic scaling behaviors— δθ ∼ Sp and
δθ ∼ Sp1/4 in the low and high Sp limits, respectively.

undergoing a rigid body rotation, due to the symmetries of the
Stokes equation upon time and parity transformations. As a
consequence, whereas the orthoradial deformations scale as
Sp, the bending amplitude in the radial direction must scale as
Sp2, which yields δ = sinψ− O(Sp2) in the low Sp limit. For
large Sperm numbers, the bending waves propagating along
the filament are damped exponentially. Thus δ also decays
exponentially to zero. It is important to notice that the inflexion
between these two asymptotic behaviors occurs at Sp ∼ 20,
which corresponds to the onset of the unstable branch in the
(Tz, Fz) constitutive relation.

The wrapping around the rotation axis increases monoton-
ically with Sp. In the low Sp limit, the linear variations of the
orthoradial bending deformations yield a linear increase of�θ
with Sp. Again, at Sp ∼ 20, this linear variation crosses over
to another power law regime. In this high Sp limit, we observe
that δθ is well approximated by Sp1/4.

The variations of δ and of δθ as a function of the axial
torque are presented in figures 6(c) and (d). These two
characteristics display an unstable branch, which would imply
a discontinuous shape transition in a torque-driven experiment.
When Tz exceeds the first ‘critical’ torque above which the rod
dynamics becomes unstable the distance to the axis is lowered
by more than 75%. The variations of the wrapping angle
are even more spectacular: the discontinuous winding of the

filament corresponds to a jump of about 70◦ around the rotation
axis.

4. Conclusion

In this paper we have studied theoretically and experimentally
the periodic motion of a flexible filament immersed in a
viscous fluid. We paid special attention to the nonlinear
force–torque relation resulting from the interplay between the
linear elasticity of the rod and the linear Stokes flow. We
have shown that the characteristics of the propulsive force
strongly depends on the actuation mode for a torque-driven
beating. In particular, in the case of an axial crankshafting
actuation, we have identified and characterized a discontinuous
transition in the filament shape resulting in a significant
amplification/reduction of the propulsive force for minute
variations of the imposed torque. This jump in the force would
allow a microswimmer or a micropump to achieve strong
accelerations without having to provide significant changes in
the actuation mechanism.
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